Superparamagnetic iron oxide nanoparticles for multiple biomedical applications

نویسنده

  • B. Steitz
چکیده

Superparamagnetic nanoparticles (SPION) were prepared by alkaline co-precipitation of ferric and ferrous chlorides in aqueous solution. The obtained particles were mixed at various ratios with different polymer solutions to obtain either SPION coated with polyvinyl alcohol (Mowiol 383), (PVA-SPION) or SPION coated with PVA modified by functional groups (amino-SPION, carboxy-SPION, and thiol-SPION). Studying human melanoma cells by theses different functionalized SPION preparations, only the amino-PVA SPION demonstrated the capacity to be uptaken by, and not beeing cytotoxic to these cells. This uptake by melanoma cells was dependent on the aminoPVA to iron oxide ratio, as an active mechanism, and all cells in a culture internalized these SPION. Depending on the size and of the surface charge of the coated and derivatized particles, the up-take rate can be optimized. Best results are shown with a positive surface charge and a hydrodynamic size of 50 to 80 nm. Static as well as dynamic magnetic forces increase significantly the up-take rate. It could also shown that these particles are useful tools in transfection as alternative to the viral vectors. Interestingly is to note, that the same particles generate heat, which can be used e.g. for local hyperthermic treatment of tumor cells. Therefore, a multitasking including transport, transfection, heating and imaging with these superparamagnetic particles will be possible. Applications like magnetically target drug delivery, magnetofection and hyperthermic treatment will be discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

PVA and EDTA grafted superparamagnetic Ni doped iron oxide nanoparticles prepared by constant current electrodeposition for biomedical applications

In this paper, a rapid and room temperature electrochemical method is introduced in preparationof Ni doped iron oxide nanoparticles (Ni-IONs) grafted with ethylenediaminetetraacetic acid (EDTA)and polyvinyl alcohol (PVA). EDTA/Ni-IONs and PVA/Ni-IONs samples were prepared through baseelectro-generation on the cathode surface from aqueous solution of iron(II) chloride, iron(III...

متن کامل

Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications.

Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great promise in biomedical applications. In this review, we summarize the recent advances in the design and fabrication of core-shell and hetero-structured SPIONs and further outline some exciting developments and progresses of these multifunctional SPIONs for diagnosis, multimodality imaging, therapy, and biophotonics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005